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Abstract. In this short note we observe that the Serre functor on the residual category
of a complete intersection can be easily described in the framework of hybrid models.
Using this description we recover some recent results of Kuznetsov and Perry.
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1. Introduction

Let X ⊂ Pn be a smooth Fano complete intersection of multi-degree (d1, ..., dk), and
write d =

∑
i di. The ambient Pn has a very simple derived category since we have

Beilinson’s full exceptional collection consisting of the line bundles O, ...,O(n). Kuznetsov
[Kuz1] observed that we can use this fact to simplify the derived category of X itself: if we
take the subset O, ...,O(n−d) and restrict them to X then they still form an exceptional
collection, but no longer a full one. So they have some orthogonal RX and we get a
semi-orthogonal decomposition:

Db(X) =
〈
RX , O, ...,O(n− d)

〉
(1)

This is only a non-trivial decomposition because X is Fano, i.e.d ≤ n; in the Calabi-Yau
or general type case we have RX = Db(X).

The subcategory RX is called the residual component (or Kuznetsov component) of
Db(X). It controls much of the interesting behaviour of Db(X): the deformation theory,
moduli spaces of objects, stability conditions, etc. [PS, BLMS, FV]. It also has a Serre
functor S, and one can ask about the behaviour of S. For example in the hypersurface
case Kuznetsov showed that RX is fractional Calabi-Yau, meaning that some power of S
is a shift functor [Kuz2].

More recently Kuznetsov and Perry [KP] studied S for higher-codimension X by a
recursive procedure. They think of X as the end point of a sequence

Pn ⊃ Xd1 ⊃ Xd1,d2 ⊃ ... ⊃ Xd1,..,dk = X (2)

given by repeatedly intersecting with hypersurfaces, and relate the Serre functors on resid-
ual categories at each step. Using this result they were able to compute some quantities
called the upper and lower Serre dimensions of RX (see Section 3). This result corrects
a conjecture of Kontsevich and Katzarkov. They also have some very nice applications,
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such as a proof of the non-existence of a Serre invariant stability condition on RX in most
cases.

The purpose of this note is to give an alternative (and rather shorter) derivation of
Kuznetsov and Perry’s results, using an idea from the string theory literature called a
‘hybrid model’.

In the case when X is a hypersurface there is a celebrated theorem of Orlov [Orl2]
which can be interpreted as relating RX to a category of matrix factorizations on an
affine orbifold:

RX = MF
(
[An+1/Zd], f

)
(3)

Here f is the degree d polynomial defining X, re-interpreted as a Zd-invariant function
on An+1. This construction was generalized to complete intersections in [Seg] (following
[Wit]) using the following two steps:

(1) Let Y+ be the total space of the vector bundle
⊕k

i=0O(−di) over Pn. On this we
have a function:

W =
k∑

i=1

fipi

Here f1, .., fk are the defining polynomials of X, pulled-up to Y+, and each pi is the
tautological section of O(−di) on Y+. Using Knörrer periodicity (e.g. [Orl1, Shi])
we equate Db(X) with the category of matrix factorizations:

Db(X) ∼= MF (Y+,W )

(2) Let P(d) denote the weighted projective space P(d1, ..., dk), and let Y− be the total
space of the vector bundle O(−1)n+1 over P(d). The spaces Y− and Y+ are related
by an ‘orbifold flip’, and there is a fully-faithful functor:

MF(Y−,W ) ↪→ MF(Y+,W ) (4)

Note that on Y− the pi are the homogeneous co-ordinates of weighted projective
space, and the fi are polynomials in the fibre co-ordinates. Under Knörrer peri-
odicity the image of this embedding is identified with RX .

The pair (Y−,W ) can be viewed as a family, indexed over P(d), of the kind of affine-
orbifolds-plus-a-function that appeared in the hypersurface case (3). The latter are called
Landau-Ginzburg models in the physics literature,1 and this ‘family of Landau-Ginzburg
models’ is called a hybrid model.

For us, the advantage of identifying RX with MF(Y−,W ) is that it makes the Serre
functor very transparent; it is simply given (up to a shift) by tensoring with the canonical
bundle ωY− . This follows from a general fact about Serre duality for matrix factorizations,
which was proven in the generality we need by Favero and Kelly [FK]. We recall it as
Proposition 2.1.2 below.

When X is a hypersurface the fact that RX is fractional Calabi-Yau follows easily from
this fact and Orlov’s theorem (3). Indeed on the orbifold [An/Zd] the dth power of any
line bundle is trivial, so some power of S is a shift.

When X has higher codimension the properties of S are more complicated, but our
point-of-view makes them fairly easy to prove.

1Although this term is now used in the mathematics literature with a more general meaning.↑
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Plan of the paper.

• In Section 2 we set up some general terminology for matrix factorizations, in
particular we recall the notion of R-charge which is essential for getting the correct
shifts.

We then produce an explicit generator for the category MF(Y−,W ), by pushing
forward the usual exceptional collection of line bundles from P(d). The reason this
works is that the critical locus of W is some thickening of P(d), and it’s enough
to generate Db(Crit(W )) since the category of matrix factorizations is supported
there.

• In Section 3 we discuss Serre dimensions. Roughly, these are given by taking a
generator for your category, applying the Serre functor repeatedly, and seeing how
the maximal and minimal degrees of Ext groups grow.

Since we have an explicit generator and a simple description of S we can find
the Serre dimensions by a straight-forward calculation.

• In Section 4 we explain how one more result of Kuznetsov-Perry can be understood
in our framework. As explained above, they take a recursive approach where they
repeatedly slice by hyperplanes and see how the Serre functor changes. In fact
they identify some power of the Serre functor (up to a shift) with some power of
a spherical twist induced by the previous slice [KP, Cor. 1.4].

In our approach to Serre dimension we don’t need this result, but it’s still
interesting to translate it into the hybrid model description. It turns out that
their spherical twist is just a line bundle on Y−, and then the observation is that
some power of this bundle equals some power of ωY− .

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union Horizon 2020 research and innovation pro-
gramme (grant agreement No.725010).

We thank the referee for pointing us to the reference [FK].

2. Background

2.1. General theory. Let Y be a smooth variety or stack equipped with:

(i) A C∗ action such that −1 ∈ C∗ acts trivially.
(ii) A regular function W ∈ Γ(OY ) of weight 2.

We call (i) the R-charge and (ii) the superpotential. Given this data, a matrix factorization
is an equivariant sheaf E on Y equipped with a map d : E → E of R-charge 1, satisfying
d2 = W · idE . Matrix factorizations form the objects of a dg-category MF(Y,W ) ([Seg,
Orl3, BFK] etc.).

There is an equivariant line bundle on Y associated to the generating character of C∗,
we denote it by O[1]. Tensoring by this line bundle is the shift operator on MF(Y,W ).
Note that in this formulation the category is Z-graded, not Z2-periodic or Z2-graded.

Remark 2.1.1. In the category of matrix factorizations there is a derived local hom’s
functor which sends matrix factorizations E ,F to an object RHom(E ,F) ∈ MF(Y, 0). To
compute it we must either replace E by a ‘locally free resolution’, i.e. an equivalent matrix
factorization whose underlying sheaf is a vector bundle, or F by an ‘injective resolution’.
The derived global sections of RHom(E ,F) give the morphisms from E to F .

More generally, if E ∈ MF(Y,W ) but F ∈ MF(Y,W ′) for some other superpotential
W ′ then RHom(E ,F) is an object in MF(Y,W ′ −W ).
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Proposition 2.1.2. [FK, Theorem 2.18] Assume that the critical locus Crit(W ) ⊂ Y is
proper. Then the category MF(Y,W ) is smooth and proper, and it has a Serre functor
given by −⊗ ωY [dimY ] where ωY is the equivariant canonical bundle.

In fact Favero-Kelly work on a more general class of Artin quotient stacks. For earlier
related results see [Pre, Sect. 8], [LP], [Dyc, Lem. 6.8], etc.

Lemma 2.1.3. Let i : Crit(W )rd ↪→ Y denote the reduced scheme underlying the critical
locus of W . Let G be a C∗-equivariant sheaf on Crit(W )rd which, up to twisting by all
characters of C∗, generates the equivariant derived category Db

C∗(Crit(W )rd). Then i∗G is
a generator of MF(Y,W ).

Proof. This follows from, for example, Proposition 3.64 and Corollary 4.14 of [BFK]. �

Remark 2.1.4. The condition that G is a sheaf (rather than a complex) is not essen-
tial but it means we can ignore the subtle distinction between Db

C∗(Crit(W )rd) and
MF (Crit(W )rd, 0).

2.2. Our setup. Now we specialize the general theory above to the example we’re inter-
ested in.

We fix positive integers n, d1, ..., dk and let d =
∑k

i=1 di. Let C∗ act on Cn+k+1

with weights (d1, ..., dk,−1, ...,−1), and write p1, ..., pk, x0, ..., xn for the corresponding
co-ordinates. We define an orbifolds Y± by taking the stack-theoretic quotients of two
different open subsets:

Y+ =
[
{(x0, ..., xn) 6= 0} / C∗

]
Y− =

[
{(p1, ..., pk) 6= 0} / C∗

]
Y+ is the total space of a vector bundle over Pn, and Y− is the total space of a vector
bundle over the weighted projective space P(d).

Now we introduce an R-charge on both these spaces by adding a second C∗ action,
which acts with weight 2 on each pi and weight 0 on each xi. On Y+ this action just
rotates the fibres. On Y− the action preserves the zero section P(d) ⊂ Y− but does not
act trivially on it, unless all the di’s are equal.

Finally we define the superpotential by choosing polynomials f1, ..., fk ∈ C[x0, ..., xn]
with fi of degree di, then setting:

W =
k∑

i=1

pifi

With this data we have categories of matrix factorizations MF(Y+,W ) and MF(Y−,W ).
As discussed in the introduction, Knörrer periodicity [Shi] gives an equivalence

MF (Y+,W ) ∼= Db(X)

where X ⊂ Pn is the complete intersection cut out by the fi. Moreover, if d < n then we
have an embedding MF(Y−,W ) ↪→ MF(Y+,W ) whose image is the residual category RX

(this follows from [Seg]).
We remark that neither of the two results above require that X is smooth. However,

we will make this assumption from now on. Given this, the following is an elementary
calculation:

Lemma 2.2.1. The critical locus of W on Y+ is exactly X. On Y−, the critical locus is
a thickening of the zero section P(d).
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It now follows from Proposition 2.1.2 that MF(Y−,W ) has a Serre functor given by a
shift of the canonical bundle. There’s some potential confusion here due to R-charge, so
we spell this out explicitly.

Any equivariant line bundle on Y− is specified by its weights under the two C∗ actions,
so is of the form O(k)[m]. Recall here that we use square brackets for the R-charge.2 In
this notation the equivariant canonical bundle of Y− is

ωY− = O(n + 1− d)[−2k]

and hence the Serre functor is:

ωY− [dimY−] = O(n + 1− d)[n− k] (5)

On Y+ we get the same answer apart from a sign change, so there the Serre functor is
O(d − n − 1)[n − k]. Note that this agrees with the Serre functor on X, as required by
Knörrer periodicity.

We can also use Lemmas 2.1.3 and 2.2.1 to deduce:

Lemma 2.2.2. Let T be the (R-charge equivariant) vector bundle

T =
d−1⊕
i=0

O(i)

on P(d). Then the push-forward of T generates MF(Y−,W ).

3. Serre dimensions

Let D be a triangulated category with a Serre functor S. For objects E,F ∈ D we
write Hom•D(E,F ) for the graded space of morphisms between E and all shifts of F . For
simplicity assume that the Homs are bounded in degree.

The Serre dimensions of D, defined by Elagin and Lunts, are some kind of measure of
the complexity of S.

Definition 3.0.1. [EL]

(1) For two objects E,F ∈ D we define

e−(E,F ) = min{k : Homk
D(E,F ) 6= 0} and e+(E,F ) = max{k : Homk

D(E,F ) 6= 0}.

(2) Choose a generator G ∈ D. The upper and lower Serre dimension of D are

Sdim(D) = lim sup
m→∞

−e−(G,SmG)

m
and Sdim(D) = lim inf

m→∞

−e+(G,SmG)

m
.

As the notation suggests, these Serre dimensions do not depend on the choice of gen-
erator G.

We want to compute the Serre dimensions of the category RX
∼= MF(Y−,W ). We have

a simple description of the Serre functor (5) and we have an explicit generator (Lemma
2.2.2) so now we just need to carry out the computation.

For simplicity we assume that each di ≥ 2, of course this can always be achieved by
reducing the number of variables.

2The R-charge is the shift in the category of matrix factorizations, there isn’t a separate homological
shift.↑
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Lemma 3.0.2. Let dmax and dmin denote the maximum and minimum of the di’s. Then
for l� 0 we have

e−
(
OP(d),OP(d)(l)

)
≥ 2l

dmax

and the bound is attained whenever l is a multiple of dmax. We also have

e+
(
OP(d),OP(d)(l)

)
≤ 2(l − n− 1)

dmin

+ n + 1

and the bound is attained whenever l − n− 1 is a multiple of dmin.

Proof. We need to compute the morphisms between OP(d) and OP(d)(l), and we do this
by first computing the local morphisms via a resolution of OP(d) (see Remark 2.1.1).

To get the resolution we observe that P(d) ⊂ X is the zero locus of a regular section
of OY−(−1)⊕n+1. We can write our superpotential in the form W =

∑
i xigi for some gi’s,

and then OP(d) is equivalent to the ‘Koszul type’ matrix factorization built from the xi’s
and the gi’s; see e.g. [Seg, Sect. 3.2]. Our assumption on degrees ensures that each gi
vanishes along P(d) so it follows that

RHom
(
OP(d),OP(d)(l)

)
=

n+1⊕
i=0

OP(d)(l − i)⊕(n+1
i )[−i] (6)

with no differential. If l � 0 then these line bundles have only zeroth cohomology, and
the morphisms from OP(d) to OP(d)(l) are simply the global sections of the RHS of (6).

We know H0(OP(d)(j)) is the degree j part of C[p1, . . . , pk]. The question we must
answer is: what are the minimum and maximum possible R-charges of a polynomial with
degree j? Notice that if pa11 . . . pakk has degree j, then

∑
aidi = j, and its R-charge is

2
∑

ai. But then:

2
j

dmax

= 2
∑

ai
di

dmax

≤ 2
∑

ai

Hence the minimum R-charge attainable is at least 2j/dmax. Taking into account the shift
in (6), we see that

e−
(
OP(d),OP(d)(l)

)
≥ min

i∈[0,n+1]

(
2

(l − i)

dmax

+ i

)
= 2

l

dmax

where we used dmax > 1. Moreover this minimum degree is actually attained whenever l

is a multiple of dmax, by a polynomial p
l/dmax

t where pt has degree dmax.
Similarly

e+
(
OP(d),OP(d)(l)

)
≤ max

i∈[0,n+1]

(
2

(l − i)

dmin

+ i

)
= 2

(l − n− 1)

dmin

+ n + 1

and the bound is attained whenever dmin divides l − n− 1. �

Recall that the index of the Fano X is indX = n + 1− d.

Theorem 3.0.3. [KP, Thm. 1.7] We have

Sdim(RX) = dimX − 2
indX

dmax

and Sdim(RX) = dimX − 2
indX

dmin
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Proof. We prove the first statement, the second being identical. By (5) the Serre functor
for MF(Y−,W ) is given by −⊗OY−(indX)[dimX]. Using the generator of Lemma 2.2.2,
we have to compute:

lim sup
m→∞

−1

m
e−

(
d−1⊕
i=0

OP(d)
(
i
)
,

d−1⊕
j=0

OP(d)
(
j + m indX

)
[m dimX]

)

= dimX − lim inf
m→∞

min
j∈[1−d,d−1]

1

m
e−

(
OP(d), OP(d)

(
j + m indX

))
But Lemma 3.0.2 implies that

2(d− 1 + m indX)

mdmax

≥ min
j∈[1−d,d−1]

1

m
e−

(
OP(d), OP(d)

(
j+m indX

))
≥ 2(1− d + m indX)

mdmax

where for the upper bound, we observe that there some j in this range such that dmax

divides j + m indX. The result follows.
�

4. The recursive approach

As discussed in the introduction, Kuznetsov and Perry take a recursive approach, view-
ing X as the end point of a sequence of complete intersections of increasing codimension.
In this section we explain what hybrid models can contribute to this point-of-view.

Let M ⊂ Pn be the penultimate variety in this sequence, i.e. the variety denoted by
Xd1,...,dk−1

in (2). So X is a divisor in M , obtained by intersecting M with a hypersurface
of degree dk. By construction the restriction functor Db(M)→ Db(X) induces a functor

RM → RX . (7)

Kuznetsov and Perry observe that this functor is spherical, and that the twist and cotwist
around it are closely related to the Serre functors on RM and RX . More precisely a certain
power of the twist (resp. cotwist) is equal, up to a shift, to a certain power of the Serre
functor on RX (resp. RM). They deduce this as an instance of a more general result
involving spherical functors and semi-orthogonal decompositions.

As before we view RX as a category of matrix factorizations on the orbifold Y−. In the
same way RM is a category of matrix factorizations on the orbifold

Z− = Tot
{
O(−1)n+1 → P(d1, ..., dk−1)

}
.

Notice the reversal of inclusions here: X is a divisor in M , but Z− is a divisor in Y−.
Moreover the appropriate superpotential on Z− is just the restriction of W from Y−. This
implies, writing

j : Z− ↪→ Y−

for the inclusion, that we have a push-forward functor

j∗ : MF(Z−,W )→ MF(Y−,W ). (8)

It is not hard to verify that this agrees with the functor (7), but we won’t do it here since
we have not discussed the details of the equivalence MF(Y−,W ) ∼= RX .

For ordinary derived categories it is a well-known and easy-to-prove fact that the push-
forward along the inclusion of a divisor j : Z ↪→ Y induces a spherical functor j∗ :
Db(Z) → Db(Y ) (e.g. [Add, Sect. 1.2]). The twist around j∗ is given by tensoring with
OY (Z), and the cotwist by tensoring with OZ(Z)[−2].
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The proofs of these facts extend to categories of matrix factorizations immediately,
the only modification being that we replace homological shifts by R-charge equivariance.
Since Z− ⊂ Y− is the set {pdk = 0}, and pdk is a section of the equivariant line bundle
OY−(dk)[2], we can conclude immediately that the functor (8) is spherical with twist and
cotwist:

Tj∗ = ⊗OY−(dk)[2], Cj∗ = ⊗OZ−(dk) (9)

Since the Serre functors on MF(Y−,W ) and MF(Z−,W ) are also line bundles, and both
these varieties have Picard rank 1, we have proven:

Proposition 4.0.1. [KP, Cor. 1.4] Some power of Tj∗ agrees, up to a shift, with some
power of the Serre functor on MF(Y−,W ). Similarly some power of Cj∗ agrees, up to a
shift, with some power of the Serre functor on MF(Z−,W ).

In fact comparing (9) with (5) we can compute that

Sdk/c
MF(Z−,W ) ' C

ind(M)/c
j∗

[
dk dim(M)

c

]
and Sdk/c

MF(Y−,W ) ' T
ind(X)/c
j∗

[
dk dim(X)− 2 ind(X)

c

]
where c = gcd(dk, ind(M)) = gcd(dk, ind(X)). This is exactly Kuznetsov and Perry’s
result.
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